Abstract

A heterogeneous neuronal population in the suprachiasmatic nucleus (SCN) sustains a cell-autonomous code for circadian time, implemented by firing-rate plasticity involving multiple ion channels. How do SCN neurons undergo stable firing-rate transitions if several ion channels change simultaneously in a heterogeneous neuronal population? Here, we addressed this question by building a heterogeneous population of SCN model neurons, each allowed to undergo one complete circadian cycle through multiple possible routes. We found that SCN neurons could achieve signature electrophysiological characteristics (day-like or night-like) despite pronounced heterogeneity in ion-channel conductances. Furthermore, for any neuron, disparate combinations of ion-channel plasticity yielded valid day-to-night or night-to-day transitions. Finally, nonlinear dimensionality reduction analyses on valid plasticity spaces revealed a low-dimensional plasticity manifold in day-to-night transitions, but not in night-to-day transitions. Our analyses unveil a synthesis of the degeneracy and the plasticity manifold frameworks that provides robustness and flexibility in achieving precise transitions despite widespread heterogeneities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.