Abstract

Phenotypic plasticity is a main mechanism for sessile organisms to cope with changing environments. Plasticity is genetically based and can evolve under natural selection so that populations within a species show distinct phenotypic responses to environment. An important question that remains elusive is whether the intraspecific variation in plasticity at different spatial scales is independent from each other. To test whether variation in plasticity to macro- and micro-environmental variation is related among each other, we used growth data of 25 Pinus pinaster populations established in seven field common gardens in NW Spain. Phenotypic plasticity to macro-environmental variation was estimated across test sites while plasticity to micro-environmental variation was estimated by using semivariography and kriging for modeling within-site heterogeneity. We provide empirical evidence of among-population variation in the magnitude of plastic responses to both micro- and macro-environmental variation. Importantly, we found that such responses were positively correlated across spatial scales. Selection for plasticity at one scale of environmental variation may impact the expression of plasticity at other scales, having important consequences on the ability of populations to buffer climate change. These results improve our understanding of the ecological drivers underlying the expression of phenotypic plasticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call