Abstract

Electrochemical techniques with disk and nano-tip electrodes, together with calcium imaging, were used to examine the effect of short-interval repetitive stimuli on both exocytosis and vesicular content in a model cell line. We show that the number of events decreases markedly with repeated stimuli suggesting a depletion of exocytosis machinery. However, repetitive stimuli induce a more stable fusion pore, leading to an increased amount of neurotransmitter release. In contrast, the total neurotransmitter content inside the vesicles decreases after repetitive stimuli, resulting in a higher average release fraction from each event. We suggest a possible mechanism regarding a link between activity-induced plasticity and fraction of release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.