Abstract

The adult central nervous system (CNS) appears to initiate a transient increase in plasticity following injury, including increases in growth-related proteins and generation of new cells. Recent evidence is reviewed that the injured adult CNS exhibits events and patterns of gene expression that are also observed during development and during regeneration following damage to the mature peripheral nervous system (PNS). The growth of neurons during development or regeneration is correlated, in part, with a coordinated expression of growth-related proteins, such as growth-associated-protein-43 (GAP-43), microtubule-associated-protein-1B (MAP1B), and polysialylated-neural-cell-adhesion-molecule (PSA-NCAM). For each of these proteins, evidence is discussed regarding its specific role in neuronal development, signals that modify its expression, and reappearance following injury. The rate of adult hippocampal neurogenesis is also affected by numerous endogenous and exogenous factors including injury. The continuing study of developmental neurobiology will likely provide further gene and protein targets for increasing plasticity and regeneration in the mature adult CNS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.