Abstract
The incremental hole-drilling technique (IHD) is a widely established and accepted technique to determine residual stresses in peened surfaces. However, high residual stresses can lead to local yielding, due to the stress concentration around the drilled hole, affecting the standard residual stress evaluation, which is based on linear elastic equations. This so-called plasticity effect can be quantified by means of a plasticity factor, which measures the residual stress magnitude with respect to the approximate onset of plasticity. The observed resultant overestimation of IHD residual stresses depends on various factors, such as the residual stress state, the stress gradients and the material’s strain hardening. In peened surfaces, equibiaxial stresses are often found. For this case, the combined effect of the local yielding and stress gradients is numerically and experimentally analyzed in detail in this work. In addition, a new plasticity factor is proposed for the evaluation of the onset of yielding around drilled holes in peened surface layers. This new factor is able to explain the agreement and disagreement found between the IHD residual stresses and those determined by X-ray diffraction in shot-peened steel surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.