Abstract
Understanding the structure and dynamics of cortical connectivity is vital to understanding cortical function. Experimental data strongly suggest that local recurrent connectivity in the cortex is significantly non-random, exhibiting, for example, above-chance bidirectionality and an overrepresentation of certain triangular motifs. Additional evidence suggests a significant distance dependency to connectivity over a local scale of a few hundred microns, and particular patterns of synaptic turnover dynamics, including a heavy-tailed distribution of synaptic efficacies, a power law distribution of synaptic lifetimes, and a tendency for stronger synapses to be more stable over time. Understanding how many of these non-random features simultaneously arise would provide valuable insights into the development and function of the cortex. While previous work has modeled some of the individual features of local cortical wiring, there is no model that begins to comprehensively account for all of them. We present a spiking network model of a rodent Layer 5 cortical slice which, via the interactions of a few simple biologically motivated intrinsic, synaptic, and structural plasticity mechanisms, qualitatively reproduces these non-random effects when combined with simple topological constraints. Our model suggests that mechanisms of self-organization arising from a small number of plasticity rules provide a parsimonious explanation for numerous experimentally observed non-random features of recurrent cortical wiring. Interestingly, similar mechanisms have been shown to endow recurrent networks with powerful learning abilities, suggesting that these mechanism are central to understanding both structure and function of cortical synaptic wiring.
Highlights
The patterns of synaptic connectivity in our brains are thought to be the neurophysiological substrate of our memories, and framework upon which our cognitive functions are computed
We present a spiking network model of a rodent Layer 5 cortical slice which, via the interactions of a few simple biologically motivated intrinsic, synaptic, and structural plasticity mechanisms, qualitatively reproduces these non-random effects when combined with simple topological constraints
Funding for this research was provided by the Johanna Quandt Stiftung
Summary
The patterns of synaptic connectivity in our brains are thought to be the neurophysiological substrate of our memories, and framework upon which our cognitive functions are computed. Understanding the development of micro-structure in the cortex has significant implications for the understanding of both developmental and cognitive / computational processes. It has been shown that much of the lateral recurrent connectivity of the layers of the cortex is significantly non-random [4,5,6], with a focus on layer 5 (L5), as this is more conventionally examined via slice studies. It is an open question which non-random features are developed as a result of direct genetic programming, neural plasticity under structured input, and spontaneous self-organization. The features we will examine are the heavy-tailed, log-normal-like distribution of synaptic efficacies or dendritic spine sizes [6,7,8,9,10] and their associated synaptic dynamics, and the overrepresentation of bidirectional connectivity and certain triangular graph motifs [6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.