Abstract

Skeletal muscle disuse atrophy can cause degenerative changes in neuromuscular junction morphology. Although Daurian ground squirrels (Spermophilus dauricus) are a natural anti-disuse animal model for studying muscle atrophy during hibernation, little is known about the morphological and regulatory mechanisms of their neuromuscular junctions. Here, we found that morphological indices of the soleus muscle were significantly lower during hibernation (torpor and interbout arousal) compared to pre-hibernation but recovered during post-hibernation. In the extensor digitorum longus muscle, neuromuscular junction morphology did not change significantly during hibernation. Agrin-Lrp4-MuSK is a key pathway for the formation and maintenance of the neuromuscular junction. Our results showed that low-density lipoprotein receptor-associated protein 4 (Lrp4) expression in the soleus (slow muscle) decreased by 46.2% in the interbout arousal group compared with the pre-hibernation group (p = 0.019), with recovery in the post-hibernation group. Compared to the pre-hibernation group, agrin expression in the extensor digitorum longus (fast muscle) increased by 67.0% in the interbout arousal group (p = 0.016). In conclusion, periodic up-regulation in agrin expression during interbout arousal may be involved in the maintenance of neuromuscular junction morphology in the extensor digitorum longus muscle during hibernation. The degenerative changes in neuromuscular junction morphology and the periodic decrease in Lrp4 protein expression in the soleus during hibernation, these changes recovered to the pre-hibernation levels in the post-hibernation group, also exhibiting significant plasticity. This plasticity may be an important mechanism for resisting disuse atrophy in hibernating animals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call