Abstract

The global scope of pollution from plastic waste is a well-known phenomenon associated with trade, mass consumption, and disposal of plastic products (e.g., personal protective equipment (PPE), viral test kits, and vacuum-packaged food). Recently, the scale of the problem has been exacerbated by increases in indoor livelihood activities during lockdowns imposed in response to the coronavirus disease 2019 (COVID-19) pandemic. The present study describes the effects of increased plastic waste on environmental footprint and human health. Further, the technological/regulatory options and life cycle assessment (LCA) approach for sustainable plastic waste management are critically dealt in terms of their implications on energy resilience and circular economy. The abrupt increase in health-care waste during pandemic has been worsening environmental quality to undermine the sustainability in general. In addition, weathered plastic particles from PPE along with microplastics (MPs) and nanoplastics (NPs) can all adsorb chemical and microbial contaminants to pose a risk to ecosystems, biota, occupational safety, and human health. PPE-derived plastic pollution during the pandemic also jeopardizes sustainable development goals, energy resilience, and climate control measures. However, it is revealed that the pandemic can be regarded as an opportunity for explicit LCA to better address the problems associated with environmental footprints of plastic waste and to focus on sustainable management technologies such as circular bio-economies, biorefineries, and thermal gasification. Future researches in the energy-efficient clean technologies and circular bio-economies (or biorefineries) in concert with a “nexus” framework are expected to help reduce plastic waste into desirable directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call