Abstract

Stress corrosion cracking (SCC) is enhanced by cold work and causes many problems in components of the nuclear power plants. Besides, during manufacturing, installation, welding and service of the material, residual strains can be produced increasing the susceptibility to SCC. For this reason, it is important to characterize the degree of plastic strain due to dislocation accumulation in each crystal. Electron backscatter diffraction (EBSD), in conjunction with scanning electron microscope (SEM), has been a great advance in this field because it enables to estimate the plastic strain in a quick and easy way. Nevertheless, over the last few years, a lot of different mathematical expressions to estimate the plastic strain have appeared in the literature. This situation hinders the election of one of them by a novel scientist in this field. Therefore, in this paper some of the more common expressions used in the calculation of the angular misorientation have been presented and discussed in order to clarify their more important aspects. Then, using one of these expressions (average local misorientation), curves relating misorientation density with known levels of strain will be obtained for an austenitic stainless steel 304L and nickel base alloy 690, which have shown a linear behaviour that is in good agreement with results found in the literature. Finally, using curves obtained in previous steps, levels of plastic strain in a plate of nickel base alloy 600 welded with weld metal 182 were estimated between 8 and 10% for a high temperature mill annealing sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.