Abstract

Plastic scintillators are widely deployed for ionizing radiation detection, as they can be fabricated in large sizes, for high detection efficiency. However, commercial plastics are limited in use for gamma spectroscopy, since their photopeak is very weak, due to low Z, and they are also limited in use for neutron detection, since proton recoils are indistinguishable from other ionizing radiation absorption events in standard plastics. We are working on scale up and production of transparent plastic scintillators based on polyvinyltoluene (PVT) loaded bismuth metallorganics for gamma spectroscopy. When activated with standard organic fluors, PVT scintillators containing 8 wt% bismuth provide energy resolution of 11% at 662 keV. When Iridium complex fluors are used, we can load plastics up to 20 wt% bismuth, while obtaining energy resolution of 10% at 662 keV. Another formulation, activated with Ir fluors for use as neutron radiography scintillator may be used for high energy neutron radiography. Acknowledgements This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and has been supported by the US DOE National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development under Contract No. DE-AC03-76SF00098

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.