Abstract

A beta ray scanner was proposed for in-situ discrimination of beta and gamma ray radioactivity. This scanner is based on the principle that gamma and beta rays experience different changes in detection efficiency in scintillators with different geometries, especially with regard to the scintillator thickness. The ratios of the counting rates of gamma rays (Rgamma), beta rays (Rbeta), and sample measurements (Rtotal) in a thick scintillator to those in a thin one are reported. The parameter Xthick, which represents the counting rate contributed by beta rays to the total counting rate in the thick scintillator, was derived as a function of those ratios. The values of Rgamma and Rbeta for 60Co and 90Sr sources were estimated as 3.2 ± 0.057 and 0.99 ± 0.0049, respectively. The estimated beta ray contributions had relative standard deviations of 2.05–4.96%. The estimated range of the beta rays emitted from 90Sr was 19 mm as per the Monte Carlo N-Particle simulation, and this value was experimentally verified. Homogeneous and surface contaminations of 60Co and 90Sr-90Y were simulated for application of the proposed method. The counting rate contributed by the beta rays was derived and found to be proportional to the concentration of 90Sr-90Y contamination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call