Abstract
As chemical-intensive products, plastics are potential sources of emerging contaminants and pose risks to the ecosystem. However, knowledge on the inventory and emissions of chemicals in plastics remains scarce, prohibiting the lifecycle assessment of their environmental exposure. Herein, full compositions of plastic protective nets (PPNs, one globally used plastics) were analyzed via nontarget screening with mass spectrometry, optical emission spectrometry, infrared spectroscopy and thermogravimetric analysis. Nontarget screening identified 861 non-polymeric organic chemicals, which were classified by network-like similarity analysis into 9 communities, dominated by phthalates (PAEs), aliphatic/oxalic esters and branched alkanes. Notably, around 80.8% (696) of the chemicals were first observed in plastics, suggesting aplenty plastic additives have previously been overlooked. Quantification results indicated PPNs contained higher levels of priority chemicals, including detrimental lead (1.17 × 104 ng/g), benzotriazoles ultraviolet stabilizers (6.66 × 103 ng/g) and PAEs (1.87 × 104 ng/g) than other plastics commonly reported. Emission projections revealed that dibutyl phthalate in PPNs had an annual release (1.83 × 103 kg) comparable to that from greenhouse films in China. These findings suggest PPNs are a significant but neglected “reservoir” for priority chemicals, which could inform future research on resolving plastic compositions, so as to promote sound chemical management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.