Abstract

We present measurements of a thin wire moving through solid 4He. Measurements were made over a wide temperature range at pressures close to the melting curve. We describe the new experimental technique and present preliminary measurements at relatively high driving forces (stresses) and velocities (strain rates). The wire moves by plastic deformation of the surrounding solid facilitated by quantum tunneling of vacancies and the motion of defects. In the bcc phase we observe very pronounced viscoelastic effects with relaxation times spanning several orders of magnitude. In the hcp phase we observe stochastic step-like motion of the wire. During the step, the wire can move at extremely high velocities. On cooling, the wire ceases to move at a temperature of around 1 K. We are unable to detect any motion at lower temperatures, down to below 10 mK.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.