Abstract

The concern about microplastic (a group of polymers) in the environment may cause us to overlook a more substantial problem: microplastics will fragment into nanoplastics. This fragmentation will lead to a high number of nanoplastics particles. Such nanoplastic can be taken up by cells, as opposed to microscale particles that are either not or to much less extend taken up. Fragmentation into nano will also release materials previously safely embedded in the polymer. We here present results from 25 OECD/ISO invivo hazard tests, and beyond, e.g. extended exposure duration, with Enchytraeus crypticus, using pristine nano-scale materials (NMs) [CuO, Fe2O3, Organic Pigment, MWCNT], fragmented products (polymers) with these NMs embedded in the matrices (FP_NM), and fragmented polymers without NMs (FP) [covering the 4 major plastic types: Acrylic, Polyethylene, Polypropylene and Epoxy]. For example, MWCNTs induced a highly significant population decrease after extended period of 60 days, despite having no impact after 28 days' exposure, the standard OECD duration. We conclude, that the standard tests were not suitable to evaluate hazards of these plastic fragments, weathering/ageing of materials is recommended, and extension of test duration can add value to the testing of NMs. We must refocus the concern to testing with polymers (not only "plastics"), from micro-to nano-polymers, and from aquatic to terrestrial environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.