Abstract

Abstract For leak-before-break (LBB) assessment, an idealized through-wall crack (TWC) is typically postulated to determine the critical crack length of cracked piping. However, such an idealization in terms of crack shape can lead to underestimations of plastic limit pressure. Although many studies have been performed to obtain accurate limit load solutions for cracked straight pipes by considering realistic crack geometries, there is still a lack of information regarding slant TWC at elbow. Therefore, three-dimensional finite element (FE) models of an elbow considering the effects of slant TWC on plastic limit pressure are developed. The proposed FE model and analysis procedure were verified through comparisons to the existing solutions for idealized TWCs in elbow. On this basis, the effect of slant TWC on the plastic limit pressure is analyzed, and a closed-form solution of the plastic limit pressure is proposed, for an elbow containing a longitudinal or a circumferential through-wall crack.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call