Abstract

The plastic hinge is the most critical damaging part of a structural element, where the highest inelastic rotation would occur. In particular, flexural members develop maximum bending abilities at that point. The current paper experimentally investigates the influence of steel fiber reinforcement at the plastic hinge length of the concrete slab under repeated loading, something which has not been reported by any researcher. Mechanical properties such as compressive strength and tensile strength of M20-grade concrete that are used for casting specimens are tested through the compressive strength test and the split tensile strength test. Six different parameters are considered in the slab while carrying out this study. First, the conventional concrete slab and then the steel-fiber-reinforced slab were cast. The plastic hinge length of the slab was calculated through different empirical expressions taken from methods by Baker, Sawyer, Corley, Mattock, Paulay, Priestley and Park. Finally, the steel fiber was added as per methods detailed by Paulay, Priestley and Park in the plastic hinge length mechanism in the concrete slab at 70 mm and 150 mm separately. The results arrived through experimental investigation by applying repeated loads to the slab, indicating that steel fibers used at critical sections of plastic hinge length provide similar strength, displacement, and performance as that of the conventional RCC slab and fully steel-fiber-reinforced concrete slabs. Steel fiber at a plastic hinge length of slab has a better advantage over a conventional slab.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call