Abstract

The ultimate rotation capacity, depending on the plastic hinge length, is a vital factor in the seismic design of flexural members. This paper focuses on the investigation of the plastic hinge length and size effect of rectangular carbon fiber-reinforced polymer (CFRP)-confined reinforced concrete (RC) columns. Firstly, considerable scatter and evident bias of the calculation results were found after evaluating existing models for calculating the plastic hinge length of FRP-confined RC columns. Accordingly, a meso-scale numerical approach was developed, with concrete heterogeneity considered, to investigate the influences of the confinement ratio and corner radius on the plastic hinge length and size effect of rectangular CFRP-confined RC columns. Results show that columns having different cross-sectional sizes exhibit similar failure patterns, and the region of lateral crack propagation for columns with lower confinement ratios is larger than that for columns with higher confinement ratios. The actual plastic hinge length is determined based on the yielding zone of reinforcement, the crushing zone of concrete, and the localization zone of curvature, while the localization zone of curvature is employed to determine the real plastic hinge zone. The size effect is found to exist in the plastic hinge length ratio, and it is weakened with the increase of the corner radius, which can be attributed to the fact that columns with higher corner ratios have more effective confinement. Taking into account the size effect, a new model for calculating the ultimate drift ratio of CFRP-confined RC columns was proposed based on an assumption of curvature distribution and presented accurate predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.