Abstract

Plastics are complex chemical mixtures of polymers and various intentionally and nonintentionally added substances. Despite the well-established links between certain plastic chemicals (bisphenols and phthalates) and adverse health effects, the composition and toxicity of real-world mixtures of plastic chemicals are not well understood. To assess both, we analyzed the chemicals from 36 plastic food contact articles from five countries using nontarget high-resolution mass spectrometry and reporter-gene assays for four nuclear receptors that represent key components of the endocrine and metabolic system. We found that chemicals activating the pregnane X receptor (PXR), peroxisome proliferator receptor γ (PPARγ), estrogen receptor α (ERα), and inhibiting the androgen receptor (AR) are prevalent in plastic packaging. We detected up to 9936 chemical features in a single product and found that each product had a rather unique chemical fingerprint. To tackle this chemical complexity, we used stepwise partial least-squares regressions and prioritized and tentatively identified the chemical features associated with receptor activity. Our findings demonstrate that most plastic food packaging contains endocrine- and metabolism-disrupting chemicals. Since samples with fewer chemical features induce less toxicity, chemical simplification is key to producing safer plastic packaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call