Abstract

The rate of deformation for glassy (amorphous) matter confined in microscopic domain at very low temperature regime was investigated using a rate-state-dependent model considering the shear thinning behavior which means, once material being subjected to high shear rates, the viscosity diminishes with increasing shear rate. The preliminary results show that there might be the enhanced rate of deformation and (shear) yield stress due to the almost vanishing viscosity in micropores subjected to some surface conditions: The relatively larger roughness (compared to the macroscopic domain) inside micropores and the slip. As the pore size decreases, the surface-to-volume ratio increases and therefore, surface roughness will greatly affect the (plastic) flow in micropores. By using the boundary perturbation method, we obtained a class of microscopic fields for the rate of deformation and yield stress at low temperature regime with the presumed small wavy roughness distributed along the walls of an annular micropore.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.