Abstract

The deformation behaviour of a newly developed alumina-forming austenitic (AFA) stainless steel at elevated temperatures was investigated. It was found that the steady-state data could be well described by a stress power law that considered the threshold stress and temperature dependence of the shear modulus and self-diffusion coefficient, suggesting that the deformation of the austenite matrix was controlled by the lattice self-diffusion. The threshold stress was temperature-dependent and appeared to be caused by Orowan bowing stress. At temperatures below 1023K, the secondary NbC phase was the major hardening precipitate, but at temperatures above 1023K, the Laves Fe2Nb phase became dominant. The apparent interaction energy required for mobile dislocations to overcome the particle obstacles decreased from 163 to 34kJ/mol with increasing temperature, which was most likely associated with the formation of the two different precipitates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.