Abstract

Low cycle fatigue properties of zirconium and zircaloy-4 were investigated at RT and 400°C. The microscopic structure was determined using scanning electron microscopy and transmission electron microscopy techniques. On the basis of analyses of fatigue damage mechanism, it is believed that fatigue is an irreversible energy dissipation process. Thus, the plastic dissipation energy per cycle is selected as a fatigue damage variable. The accumulated plastic dissipation energy is calculated at the condition of considering cyclic hardening, saturation and softening characters of zirconium and zircaloy-4 during cycling. The testing results show that there present a power law between the plastic dissipation energy and fatigue lifetime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.