Abstract

The energy-based approach to predict the fatigue crack growth behavior under constant and variable amplitude loading (VAL) of the aluminum alloy 2024 T351 has been investigated and detailed analyses discussed. Firstly, the plastic strain energy was determined per cycle for different block load tests. The relationship between the crack advance and hysteretic energy dissipated per block can be represented by a power law. Then, an analytical model to estimate the lifetime for each spectrum is proposed. The results obtained are compared with the experimentally measured results and the models proposed by Klingbeil\'s model and Tracey\'s model. The evolution of the hysteretic energy dissipated per block is shown similar with that observed under constant amplitude loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call