Abstract
Abstract Processing isotactic polypropylene (iPP) from cast film into biaxially oriented polypropylene (BOPP) involves plastic drawing of a semi-crystalline morphology in the melting range of iPP, where the crystal phase is reduced and the polymer has high mobility. The literature claims that plastic drawing in general and at elevated temperatures in particular depends predominantly on the structure of the amorphous entanglement network. We investigated this aspect using laboratory-scale biaxial drawing experiments. Three iPP homopolymer types differing in chain isotacticity and molecular weight distribution were extruded into 200-μm-thick primary sheets using 10 different extrusion settings. The sheets were biaxially drawn on a laboratory stretcher at 157°C and 160°C, recording the respective stress-strain curves. These curves were evaluated according to a rubber elasticity model to obtain the network modulus, G N, of the entanglement network. The effects of iPP type, the extrusion parameters, the resulting cast film properties, and the draw temperature on G N are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.