Abstract

A three-dimensional model is proposed for plastic deformation transfer through the amorphous intercrystallite phase in mechanically loaded nanoceramics. In this model, glide dislocation loops are pressed against amorphous intercrystallite boundaries by the applied local shear stress and initiate in them local longitudinal plastic shears, which causes emission of new glide dislocation loops into neighboring grains. The energy characteristics of these processes and the critical applied stress required for barrierless nucleation of grainboundary and intragrain loops are calculated. As an example, a nanoceramic based on cubic silicon carbide is considered. It is shown that plastic deformation transfer through the amorphous intercrystallite phase in such nanoceramics is energetically favorable and can occur athermically over wide ranges of values of the applied stress and the structural characteristics of the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.