Abstract
ABSTRACTThe deformation behavior of single crystals of Mo(Si,Al)2 with the C40 structure has been studied as a function of crystal orientation and Al content in the temperature range from room temperature to 1500°C in compression. Plastic flow is possible only above 1100°C for orientations where slip along <1120> on (0001) is operative and no other slip systems are observed over whole temperature range investigated. The critical resolved shear stress for basal slip decreases rapidly with increasing temperature and the Schmid law is valid. Basal slip appears to occur through a synchroshear mechanism, in which a-dislocations (b=1/3<1120>) dissociate into two synchro-partial dislocations with the identical Burgers vector(b*1/6<1120>) and each synchro-partial further dissociates into two partials on two adjacent planes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.