Abstract

Nanoporous materials, can present an outstanding range of mechanical properties. Both molecular dynamics and dislocation analysis were used to evaluate and quantify the evolution of plasticity in a porous Ta single crystal containing randomly placed voids with 3.3nm radii and average initial porosity of 4.1%, when subjected to uniaxial compressive strain. Nanovoids act as effective sources for dislocation emission. Dislocation shear loops nucleate at the surface of the voids and expand by the advance of the edge component. The evolution of dislocation configuration and densities were predicted by the molecular dynamics calculations and successfully compared to an analysis based on Ashby’s concept of geometrically-necessary dislocations. Resolved shear stress calculations were performed for all bcc slip systems and used to identify the operating Burgers vectors in the dislocation loops. The temperature excursion during plastic deformation was used to estimate the mobile dislocation density which is found to be less than 10% of the total dislocation density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.