Abstract
We use large-scale molecular dynamics simulations to investigate plastic deformation of semicrystalline polymers with randomly nucleated crystallites. The strain-softening regime is dominated by deformation of crystallites via reorientation of chain-folded lamellae toward the tensile axis, fragmentation of largest crystalline domains, and a partial loss of crystallinity. The strain-hardening regime coincides with unfolding of chains and recrystallization as a result of strain-induced chain alignment. These observed deformation mechanisms are consistent with experimental findings. We compare the tensile behavior of semicrystalline polymers with their amorphous counterparts at temperatures above and below the glass transition temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.