Abstract

The plastic deformation modes of commercially pure titanium (CP-Ti) were studied using an in situ tensile test monitored by electron-backscatter-diffraction (EBSD) assisted slip trace analysis. The plastic strain was primarily accommodated by prismatic slip, followed by deformation twins and pyramidal slip. The slip transmission between two adjacent grains was predicted using the geometric compatibility factor m′, which influenced not only the degree of stress concentration but also the activity of dislocation slip systems. Stress concentration mainly occurred at GBs with an m′ less than 0.5 and could be released by the activities of pyramidal slip or deformation twins with high critical shear stress (CRSS).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.