Abstract

A gradient nanostructured (GNS) surface layer was generated in a dual-phase Cu-Ag alloy by means of surface mechanical grinding treatment at liquid nitrogen temperature. With a decreasing depth in the surface layer, the coarse-grained microstructure of Cu matrix and Ag precipitates gradually converts into a nanolaminated structure of Ag- and Cu-rich phases with simultaneous chemical mixing, and finally forms a homogeneous single-phase supersaturated solid solution (SSS) nanostructure. Accordingly, a dislocation-mediated transportation mechanism was proposed to dominate the chemical mixing of Ag and Cu atoms, i.e., dislocations interacting with solution atoms penetrate the Cu/Ag interface and glide in the neighboring solvent-phase lamella.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call