Abstract

The width of a thin plastic annular zone formed during the deformation of a pennyshaped crack in a transversely isotropic layer of an ideal elasto-plastic material is determined. Considered are the cases where the penny-shaped crack is extended by normal stresses and by torsional stresses. The faces of the layer are shear free and deformation of the plastic zone around the penny-shaped crack occurs according to the Dugdale hypothesis. For each case, the solution of the problem is reduced to a Fredholm integral equation of the second kind. Iterative solutions are obtained for small values of the parameters and numerical results for the width of the plastic zone are determined. Graphical results showing the effect of transverse isotropy upon the width of the plastic zone are also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call