Abstract

The mechanical behavior of binary TiAl alloys containing 46 to 60 at. pct Al has been studied in bulk materials preparedvia rapid solidification processing. Bending and tensile tests were carried out at room temperature as a function of Al concentration. A few alloys were also tested from liquid nitrogen temperature to ∼ 1000°C. Deformation substructures were studied by analytical transmission electron microscopy and fracture modes by scanning electron microscopy (SEM). It was found that both microstructure and composition strongly affect the mechanical behavior of TiAl-base alloys. A duplex structure, which contains both primary y grains and transformedγ/α 2 lamellar grains, is more deformable than a single-phase or a fully transformed structure. The highest plasticities are observed in duplex alloys containing 48–50 at. pct Al after heat treatment in the center of theγ + α phase field. The deformation of these duplex alloys is facilitated by 1/2[110] slip and {111} twinning, but very limited superdislocation slip occurs. The twin deformation is suggested to result from a lowered stacking fault energy due to oxygen depletion or an intrinsic change in chemical bonding. Other factors, such as grain size and grain boundary chemistry and structure, are important from a fracture point of view. The results on the deformation and fracture modes as a function of test temperature are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.