Abstract

It is always a compelling challenge to develop solid electrolyte for ambient-temperature all-solid-state rechargeable batteries, which occupies superior ionic conductivity, high ion transference number, considerable mechanical property, and favorable interfacial contact. Here, a nonwoven supported plastic crystal polymer electrolyte containing anion-trapping boron moieties (B-PCPE) for all-solid-state sodium-ion batteries (SIBs) is first reported to improve overall performances. The B-BCPE was prepared by in situ growth of plastic crystal electrolyte and boron-containing cross-linker inside a nonwoven support via UV-curing technique. With an anion acceptor contained three-dimensional network structure, the B-PCPE simultaneously exhibited a remarkable room temperature ionic conductivity (0.36 mS cm-1), high sodium-ion transference number (~0.62), and a superior tensile strength (28.2 MPa). Remarkably, plastic crystal polymer electrolyte impregnated composite NaNi1/3Fe1/3Mn1/3O2 (c-NFM) cathode and hard carbon (c-HC) anode were designed by in situ growth technique. By this technique, ion transport in electrodes as well as that between electrode-electrolyte interfaces could be strengthened. Therefore, the cycle and rate performance of all-solid-state SIB assembled by this technique are greatly enhanced. The all-solid-state SIB assembled by this technique delivers a high first discharge capacity of 104.8 mA h g-1with capacity retention of about 80.1% after 120 cycles at 0.1 C. It’s believed that B-PCPE is a promising candidate for practical application and provides a new perspective to design high-performance solid electrolyte for ambient-temperature all-solid-state batteries with exceptional rate capability and cycle stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.