Abstract
Unilateral AMPA lesions of the nucleus basalis magnocellularis (nbm) produced a nearly complete loss of cholinergic markers in the ipsilateral frontal and parietal cortices with no recovery at 6 months. The loss was associated with compensatory increases in AChE-positive fibre density in the contralateral cortex, in ipsilateral cortical regions not receiving their cholinergic innervation from the nbm and in the size of cholinergic magnocellular neurones in the contralateral nbm. The hypertrophy and increase in AChE-positive fibre density were apparent at 4-6 weeks after lesion and increased with time. Cholinergic transplants to cholinergically deafferented cortex prevented development of the compensatory increases in AChE-positive fibre density and restored AChE-positive fibre density and ChAT activity to control levels in ipsilateral cholinergically deafferented regions, partially after 6-8 weeks and completely after 6 months. In contrast, when cholinergic grafts were placed into unlesioned cortex, axonal outgrowth was localized to the vicinity of the transplant and did not develop with time. These results support the concept that vacant synapses promote and direct axonal outgrowth from transplanted neurones and that grafted cholinergic neurones integrate into the lesioned forebrain cholinergic projections system and prevent the lesion-induced changes in AChE-positive fibre density and ChAT activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.