Abstract

The enzyme IsPETase can efficiently degrade polyethylene terephthalate (PET) at room temperature and is an attractive method of plastic bioconversion. Based on mutagenesis experiments on IsPETase, we propose a physical model which predicts that its reaction mechanism can be described by the Michaelis-Menten model with a catalytic efficiency of Ka∙k2, where Ka is the association constant of substrate binding and k2 is the rate constant to form the acyl-enzyme intermediate. This model verifies the assumption of Michaelis-Menten kinetics in previous studies on PETases and has novel applications in deriving the enzyme activity using computational molecular dockings. By computationally docking bis-(2-hydroxyethyl) terephthalic acid (BHET) on the surface of IsPETase mutants, we studied the catalytic effects of various side chains and observed that their predicted activities are consistent with experimental data, with a correlation coefficient in the range of 0.79∼0.88. Based on this study, our model presents an analytical interpretation for the reaction mechanism of PETases and provides an efficient method for computing their catalytic efficiency for identifying enzymes with a better catalytic performance from numerous protein sequences in open databases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call