Abstract

Bio-mitigation of plastics by microorganisms generates carbon dioxide (CO2) that can be utilized for algal biomass generation. Pseudomonas mendocina ABF786, reportedly the most efficient plastic-degrading bacteria, was screened using the modified most probable number technique. This study highlights the use of an integrative prototype for the production of microalgal biomass (Chlorella vulgaris) in combination with bio-mitigation of plastics, which serves a dual purpose: (i) increased plastic-degradation capability by microorganisms (53%–85% increase in plastic weight loss) due to removal of CO2 feedback inhibition and (ii) increased algal biomass generation (200%–237%) due to supply of extra CO2 from plastic degradation to the algal cultivation flask. Whole-genome sequencing and functional annotation confirmed that all the genes involved in the mineralization of plastic to CO2 are present within the genome of P. mendocina ABF786. Using two or more microbial cultures for remediation may increase the process efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.