Abstract

AbstractThe mechanical and plastic behaviors of refractory silicide single crystals with Cllb (MoSi2), C40 (CrSi2, TaSi2 and NbSi2), D88 (Ti5Si3) and Cl (CoSi2 and (Co0.9Ni0.1)Si2) structures were investigated. The C40–type silicides were deformed by (0001)<1120> slip. Their yield stress decreased sharply with increasing temperature but NbSi2 and TaSi2 which were deformable even at low temperatures, exhibited anomalous strengthening around 1350°C. Deformation of Ti5Si3 whose ductile-brittle transition occurred around 1300°C was controlled by twins and the brittle fracture occurred on the basal plane. In CoSi2 the {001}<100> slip was only activated at ambient temperatures but addition of Ni activated {110}<110> slip as secondary slip system and improved the ductility. The creep behavior of MoSi2 and CrSi2 single crystals were also investigated and was found to be controlled by the viscous and glide motion of dislocations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.