Abstract

Nanocarbons have shown great potential as a sustainable alternative to metal catalysts, but their powder form limits their industrial applications. The preparation of nanocarbon-based monolithic catalysts is a practical approach for overcoming the resulting pressure drop associated with their powder form. In our previous work, a ploycation-mediated approach was used to successfully prepare nanocarbon-containing monoliths. Unfortunately, because there are no macropores in the monolith, it needs to be crashed into millimeter-sized particles before application. Therefore, developing a facile method for preparing mechanically robust nanocarbon-based macroporous monolithic catalysts is vital but still challenging. Herein, evoked by swallows building their nests, we report an approach for successfully preparing a mechanically robust nanodiamond-based macroporous monolith catalyst by plastering melamine sponge (MS) with a slurry composed of nanodiamonds (NDs) and poly(imidazolium-methylene) chloride (PImM) followed by an annealing process. The macroporous monolith catalyst (ND/NCMS-NCPImM) containing NDs well dispersed in N-doped carbon is mechanically robust with enriched macroscopic pores. It exhibits outstanding catalysis toward ethylbenzene to styrene through a direct dehydrogenation reaction with a high styrene rate in a steady state (5.50 mmol g-1 h-1) and high styrene selectivity (99.5%). ND/NCMS-NCPImM shows much higher activity than powder ND by 1.9 fold. In addition, this work solves the significant problem of large pressure drop encountered with conventional powdered nanocarbon catalysts in the flow reactor. This work not only creates an excellent nanodiamond-based macroporous monolithic ethylbenzene direct dehydrogenation catalyst but also presents a promising avenue for preparing other macroporous monolithic catalysts for diverse transformations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.