Abstract

We present an extensive electron energy loss spectroscopy study of the low-loss energy region, recorded on multishell carbon and boron-nitride nanotubes and carbon hyperfullerenes. Collections of spectra were recorded in a scanning transmission electron microscope by scanning a subnanometer probe from vacuum into the center of the nano-objects. This experimental technique provides the unique ability of disentangling and identifying the different excitation modes of a nanoparticle. We concentrate on the study of surface modes excited in a near-field geometry where the coupling distance between the electron beam and the surface of the nano-objects is accurately monitored. Similarities between surface collective excitations in the different layered nanostructures (cylindrical or spherical, boron nitride, or carbon constituted) are pointed out. Two surface modes at 12--13 eV and 17--18 eV are experimentally clearly evidenced. We show that these modes are accurately described by a classical continuum dielectric model taking fully into account the anisotropic character and the hollow geometry of the nanoparticles. These two modes are shown to be directly related to the in-plane and out-of-plane components of the dielectric tensor. The higher-energy mode (in-plane mode) is shown to shift to higher energy with decreasing impact parameter, as a result of an increase in the weights of the high-order multipolar modes while reaching the surface of the nano-objects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.