Abstract

The complex zeroes of dielectric response function of a doped GaAs superlattice are computed to study the frequencies and damping rates of oscillations in coupled electron-hole plasma. The real part of a complex zero describes the plasma frequency, whereas imaginary part of it yields the damping rate. Strong scattering of charge carriers from random impurity potentials in a doped GaAs superlattice gives rise to a large value of damping rate which causes over-damping of plasma oscillations of coupled electron-hole gas below qc, a critical value of wave vector component (q) along the plane of a layer of electrons (holes). The plasma oscillations which correspond to electrons gas enter into over-damped regime for the case of weak coupling between layers. Whereas, plasma oscillations which belong to hole gas go to over-damped regime of oscillations for both strong as well as weak coupling between layers. The damping rate shows strongq-dependence forq < qc, whereas it weakly depends onq forq ≥qc. The damping rate exhibits a sudden change atq =qc, indicating a transition from non-diffusive regime (where collective excitation can be excited) to diffusive regime (over-damped oscillations).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.