Abstract

We study the hybrid excitations due to the coupling between surface optical phonons of a polar insulator substrate and plasmons in the valley-spin-polarized metal phase of silicene under an exchange field. We perform the calculations within the generalized random-phase approximation where the plasmon-phonon coupling is taken into account by the long-range Fr$\ddot{\mathrm{o}}$hlich interaction. Our investigation on two hybridized plasmon branches in different spin and valley subbands shows distinct behavior compared to the uncoupled case. Interestingly, in one valley, it is found that while the high energy hybrid branch is totally damped in the spin-up state, it can be well-defined in the the spin-down state. Moreover, we show that the electron-phonon coupling is stronger in both spin-down subbands, regardless of valley index, due to their higher electron densities. In addition, we study the effects of electron-phonon coupling on the quasiparticle scattering rate of four distinct spin-valley locked subbands. The results of our calculations predict a general enhancement in the scattering rate for all subbands, and a jump in the case of spin-down states. This sharp increase associated to the damping of hybrid plasmon modes is almost absent in the uncoupled case. The results suggest an effective way for manipulating collective modes of valley-spin-polarized silicene which may become useful in future valleytronic and spintronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.