Abstract
Localized surfaceplasmon resonances of metallic nanoparticles can be used for biosensing because of their sensitive dependence on the refractive index of the surrounding medium. The binding of molecules to the particles causes a change of the effective refractive index in their close vicinity, which leads to a reversible shift of the resonance. We present simulations and sensing experiments of a plasmonresonancebased biosensor that makes use of the narrow antisymmetric resonance in coupled plasmonic vertical dimers. The sensitivity of the antisymmetric resonance is compared with that of a surface lattice resonance for refractiveindex sensing of bulk and of thin layers of molecules. The functionality of such a sensor surface is demonstrated via a testosterone immunoassay for detection of antibody from a solution by binding to surface-immobilized antigen in a fluidic channel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.