Abstract

Diffraction of light prevents optical microscopes from having spatial resolution beyond a value comparable to the wavelength of the probing light. This essentially means that visible light cannot image nanomaterials. Here we review the mechanism for going beyond this diffraction limit and discuss how manipulation of light by means of surface plasmons propagating along the metal surface can help to achieve this. The interesting behaviour of light under the influence of plasmons not only allows superlensing, in which perfect imaging is possible through a flat thin metal film, but can also provide nano-imaging of practical samples by using a localized surface plasmon mode at the tip of a metallic nanoprobe. We also discuss the current research status and some intriguing future possibilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.