Abstract

We present a plasmonics-enhanced spikey nanorattle-based biosensor for direct surface-enhanced Raman scattering (SERS) detection of mRNA cancer biomarkers. Early detection of cancers such as head and neck squamous cell carcinoma (HNSCC) is critical for improving patient outcomes in regions with limited access totraditional diagnostic methods. Our method targets Keratin 14 (KRT14), a promising diagnostic mRNA biomarker for HNSCC, using a sandwich hybridization approach with magnetic beads and SERS spikey nanorattles (SpNR). We synthesized SpNR with a core-gap-shell structure to enhance SERS signals, achieving a limit of detection of 90 femtomolar. A pilot study using clinical samples demonstrated the efficacy of our biosensor in distinguishing between tissue with positive or negative diagnosis for HNSCC, highlighting its potential for rapid and sensitive cancer diagnostics in low-resource settings. This plasmonic assay offers a promising avenue for portable and high-specificity detection of nucleic acid biomarkers, with implications for early cancer detection and improved patient care, especially in middle and low-resource settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.