Abstract

Optical sensors have applications in a range of settings, from measuring mechanical vibrations in manufacturing processes to biometrics in security devices and the detection of proteins and viruses in biomedical research. Many sensing approaches exist and plasmonic systems in particular have been studied extensively due to their ability to confine light below the diffraction limit, which greatly enhances their sensitivity compared to conventional approaches. Recently, various quantum techniques have been discovered that can outperform classical sensing ones and provide sensitivity beyond the shot-noise limit. The use of these quantum techniques in plasmonics for improving sensing performance is currently being explored. We study the performance of a plasmonic sensor that exploits the quantum nature of light and its highly confined field. We consider specialized quantum states and by comparison we show how each can provide improved sensitivity beyond the shot-noise limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.