Abstract
Silver nanoparticles dispersed on the surface of an inverted GaN LED were found to plasmonically enhance the near-bandedge emission. The resonant surface plasmon coupling led to a significant enhancement in the exciton decay rate and the ensemble of nanoparticles provided a mechanism to scatter the coupled energy as free space radiation. The inverted LED structure employed a tunnel junction to avoid the standard thick p+ GaN current spreading contact layer. In contrast to a standard design, the top contact was a thin n++ AlGaN layer, which brought the quantum well into the fringing field of the silver nanoparticles. This proximity allowed the excitons induced within the quantum well to couple to the surface plasmons, which in turn led to the enhanced band edge emission from the LED.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.