Abstract

The development of electrically-driven low-dimensional coherent light sources via highly-polarized polariton emission behavior has been extensively researched, but suffers from limited modulation of the exciton-photon coupling strengths. Herein, an electrically-biased near-infrared exciton-polariton light-emitting diode (LED), which includes a Ga-doped ZnO microwire (ZnO:Ga MW) and p-type GaAs substrate, is demonstrated. The well-designed LED structure is conducive to producing strong coupling between excitons and cavity photons, thus yielding highly-polarized light-emissions due to the optical birefringence in the ZnO:Ga MW microcavity. In particular, when the LED device is modified using Au&Ag alloy nanorods (AuAgNRs) with desired plasmonic properties, the electroluminescence (EL) performance is significantly boosted, especially the Rabi-splitting energy, which increases from 96 to 285 meV. The current-injection exciton-polariton emission from the LED undergoing a strong coupling regime is confirmed through angle-resolved EL measurements. This study exhibits a performance-boosted near-infrared exciton-polariton LED at room temperature, which provides a new scheme toward the realization of highly energy-efficient polariton coherent light sources. Further, the significantly lower density of polariton states induced by the incorporated metal nanostructures highlights a bright future of realizing ultralow-threshold polariton lasers much more feasibly, in comparison to conventional lasers based on narrow bandgap semiconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.