Abstract
We investigate the transmission properties of a metallic layer with narrow slits. Recent measurements and numerical calculations concerning the light transmission through metallic sub-wavelength structures suggest that an unexpectedly high transmission coefficient is possible. We analyze the time harmonic Maxwell's equations in the $H$-parallel case for a fixed incident wavelength. Denoting by $\eta>0$ the typical size of the complex structure, effective equations describing the limit $\eta\to 0$ are derived. For metallic permittivities with negative real part, plasmonic waves can be excited on the surfaces of the channels. When these waves are in resonance with the height of the layer, the result can be perfect transmission through the layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Networks & Heterogeneous Media
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.