Abstract

In this paper, we propose a novel wavelength demultiplexer based on metal-insulator-metal plasmonic waveguides with a nanoscale ring resonator. Its transmission characteristics are numerically studied using finite element method (FEM) simulations, and the eigenwavelengths of the ring resonator are theoretically calculated. For the proposed structure, we found that the ratio of the orders of resonant transmittance peaks for two different high-order modes of the ring resonator is close to the ratio of the two communication wavelengths 1310 and 1550nm. These resonance wavelengths of the demultiplexer are effortlessly tuned by varying the refractive index of the material in the ring resonator and the geometrical parameters of the structure. The results simulated by FEM agree well with those from the resonant theory of the ring resonator. The presented structures will have significant potential applications in highly integrated plasmonic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.