Abstract

AbstractProduct selectivity of alkyne hydroamination over catalytic Au2Co alloy nanoparticles (NPs) can be made switchable by a light‐on/light‐off process, yielding imine (cross‐coupling product of aniline and alkyne) under visible‐light irradiation, but 1,4‐diphenylbutadiyne in the dark. The low‐flux light irradiation concentrates aniline on the catalyst, accelerating the catalytic cross‐coupling by several orders of magnitude even at a very low overall aniline concentrations (1.0×10−3 mol L−1). A tentative mechanism is that Au2Co NPs absorb light, generating an intense fringing electromagnetic field and hot electrons. The sharp field‐gradient (plasmonic optical force) can selectively enhance adsorption of light‐polarizable aniline molecules on the catalyst. The light irradiation thereby alters the aniline/alkyne ratio at the NPs surface, switching product selectivity. This represents a new paradigm to modify a catalysis process by light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call