Abstract

AbstractMethods for efficient detachment of cells avoiding damage are required in tissue engineering and regenerative medicine. We introduce a bottom–up approach to build plasmonic substrates using micellar block copolymer nanolithography to generate a 2D array of Au seeds, followed by chemical growth leading to anisotropic nanoparticles. The resulting plasmonic substrates show a broad plasmon band covering a wide part of the visible and near‐infrared (NIR) spectral ranges. Both human and murine cells were successfully grown on the substrates. A simple functionalization step of the plasmonic substrates with the cyclic arginylglycylaspartic acid (c‐RGD) peptide allowed us to tune the morphology of integrin‐rich human umbilical vein endothelial cells (HUVEC). Subsequent irradiation with a NIR laser led to highly efficient detachment of the cells with cell viability confirmed using the MTT assay. We thus propose the use of such plasmonic substrates for cell growth and controlled detachment using remote near‐IR irradiation, as a general method for cell culture in biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.